
SDSS and GriPhyN

 1

SDSS Virtual Data Requirements:
A Weak Lensing Map as a Prototype Virtual Data Set

James Annis1, Steve Kent1, Alex Szalay2

1Experimental Astrophysics Group, Fermilab
2Department of Physics and Astronomy, The Johns Hopkins University

Draft v0 April 6, 2001

We examine the Sloan Digital Sky Survey data pipelines in the light of virtual data. After a brief
review of the SDSS project, pipelines, and data products, we consider the intersection of GriPhyN
interests and SDSS activities. We then suggest that the appropriate prototype virtual data set is a
weak lensing map derived from the co-added Southern Survey of the SDSS (where coadd is the
process of adding images together). The request for the weak lensing map is a request for a catalog
made from the coadded images, the existence or non-existence of which determines the need for
running all of the SDSS pipelines, running special coadding code, and re-running the SDSS
pipelines. While astronomers naturally focus on the image processing step of the coadd, the bulk of
the process is dealing with the same multi- faceted bookkeeping problem that faces all Virtual Data
applications. The creation of the coadded South is a challenge that the SDSS collaboration will be
solving over the next two years.

1 Introduction..2

1.1 Description of the SDSS...2
1.2 Description of SDSS data products...2
1.3 Description of SDSS Pipelines..3

2 GriPhyN and the SDSS...3
2.1 Description of the Abstracted SDSS Pipeline..4
2.2 The Factory Mode ..5
2.3 GriPhyN and the SDSS..6

3 The SDSS Virtual Data Problem: The Southern Coadd ..6
3.1 The Southern Survey Coadd In Design Detail...7

4 Conclusion..9
5 Appendix A: An Example SDSS Pipeline Plan File ...10
6 Appendix B: An Example SDSS Pipeline Parameter File ..12

SDSS and GriPhyN

 2

1 Introduction

The analysis of weak lensing signals provides one of the very few direct measurements of mass
available to astronomy, and there is great interest in pursing the analysis to the faintest magnitudes and
widest sky coverage available. While the main SDSS survey does not reach limiting fluxes faint enough
to pursue true weak lensing maps, the SDSS Southern Survey does. In this survey, the same area of sky
is imaged 20-60 times and the images added together to produce a image that reaches sqrt(N) times
deeper in flux. The sqrt(N) is of interest: while the full complement of imaging data provides the
maximal signal to noise, much of the improvement comes in the first handful of images
and thus intermediate coadds are of interest.

We take the challenge of building weak lensing maps as the prototype Virtual Data problem in the
Sloan Digital Sky Survey.

1.1 Description of the SDSS

The Sloan Digital Sky Survey is a project to produce a map the Northern Celestial sky. We use a 150
Megapixel camera to obtain 5-bandpass images of the sky; the final 5 images are each 1 million by 1
million pixels. We then target the 1.2 million brightest astrophysically interesting for spectroscopy,
allowing us to produce 3-dimensional maps of the galaxies in the universe out to 3 billion light years,
luminous elliptical galaxies out to 5 billion light years, and quasars out to 10 billion light years. If the
spectra were combined row by row into an image, they themselves would be an image of 4096 pixels
by 1.2 million pixels.

The survey is performed at Apache Point Observatory in New Mexico, where the specially designed
wide field 2.5m telescope is sited, along with its 0.5m photometric telescope and with instruments built
by Princeton and Johns Hopkins University. The data are reduced at Fermilab using pipelines
constructed by Princeton, University of Chicago, The US Naval Observatory, Fermilab, and the Johns
Hopkins University.

1.2 Description of SDSS data products

There are a variety of data products from the SDSS.

catalogs measured parameters of all objects 500 Gig
atlas images cutouts around all objects 700 Gig
binned sky sky leftover after cutouts, binned 4x4 350 Gig
masks regions of the sky not analyzed 350 Gig
calibration a variety of calibration information 150 Gig
frames corrected images 9.2 Terabyte

SDSS and GriPhyN

 3

The Southern Survey, taken run by run amasses to 2/3rds of those totals.

The components of any given 200 sq-degree coadd of the south come to:

catalogs measured parameters of all objects 10 Gig
atlas images cutouts around all objects 15 Gig
binned sky sky leftover after cutouts, binned 4x4 7 Gig
masks regions of the sky not analyzed 7 Gig
calibration a variety of calibration information 3 Gig
frames corrected images Nx200 Gig

1.3 Description of SDSS Pipelines

There are a large number of pipelines that run more or less sequentially on theSDSS data.

 Pipeline Function
 SSC preliminary astrometric information
 Astrom calculate the astrometric calibration
 Postage Stamp determine the point spread function
 Photo measure objects in the frames
 Mtpipe calculate the photometric calibration
 Nfcalib apply the photometric and astrometric calibrations
 Opdb store the data used in operations
 Target select targets for spectroscopy from the data
 Tile optimize the placement of the spectroscopic plates
 Plate design the plates: take sky coordinates down to machine drilling x,y
 Spectro-2d extract the 600 fiber spectra from the 4 spectroscopic images
 Spectro-1d measure the redshift and classification of the spectra
 SX the catalog science database
 Atlas-DB the atlas image/spectra science database

All of these pipelines are glued together by a over-pipeline called DP whose sole job it is to get the
outputs from one pipeline into the next pipeline. The interfaces to these pipelines are controlled by a
data model held under change control; this is necessary but not sufficient.

2 GriPhyN and the SDSS

A big challenge for GriPhyN is to capture as much as possible the ability to generate every possible
reduced data set, presuming that only the raw data are maintained permanently. This is indeed a big
challenge, particularly for the experiments, where data processing pipelines are incompletely
automated. However, it is an interesting exercise to see if one could describe the steps in SDSS data
processing in a way that is generic, modular, and could be exercised in a framework envisioned by

SDSS and GriPhyN

 4

GriPhyN. Indeed, a major challenge of GriPhyN is to define a model for data processing that is
tractable for experiments to implement, general enough to meet the needs of a diverse set of
experiments, and useful enough to be desirable in a distributed "grid" environment.

The SDSS data processing is file oriented, as are the LIGO examples that we have seen. Atlas/CMS are
object oriented. Certain SDSS queries will also be object oriented (given an ID for an object on the
sky, give me a full set of data) - however, the object ID can always be mapped to a file that contains the
object, so the translation is easy. I think of these as data requests. More interesting situation will
involve queries against attributes that may not exist - e.g., return data for an object nearest a given
position on the sky. This cannot be done if there is no catalog of objects in the first place; instead,
there must be a mechanism to convert the query over objects into a query on attributes of request-able
"objects" (which, in the SDSS case, are mapped into all files that such objects might reside in).

Data processing in SDSS is procedure oriented: start with raw data, create processing jobs (multiple
stages), output files are created at the end. For a GriPhyN environment, we really want to go the other
direction: given a file, say, what is needed to created it? This requires thinking of the data processing
flow in "reverse order".

2.1 Description of the Abstracted SDSS Pipeline

Since data processing consists of running a series of pipelines, we wish to characterize each pipeline in
the same fashion, so that the totality of processing is the combination of a number of modular steps.
In SDSS land, we call this the "factory".

A single pipeline has inputs and outputs of the following flavors:

INPUTS:
 1. A plan file that defines which set of data are to be processed,
 the root directories for input & output files.
 2. One or more parameter files - tuning parameters applicable to this
 particular set of data. Often there is a default set of parameters
 provided with the pipeline code. Occasionally these are
 overridden to handle special properties of the data.
 3. Various input files, that are the products of upstream pipelines.
 The pipelines usually have internal knowledge of how such files
 are named and located relative to the root directories.
 4. Environment variables. These are used to define which versions of
 pipelines are being run. A single pipeline may have multiple
 dependent products. Normally, though, the version of a pipeline
 product is uniquely related to the versions of all dependent
 products.

OUTPUTS:
 1. Output files that are the data products themselves
 2. Log and error files
 3. Quality control files. These identify any outputs that are

SDSS and GriPhyN

 5

 flawed such that subsequent pipelines cannot run. They do not
 identify outputs that are out of bounds regarding a quality
 threshold but do not impede the running of a follow-on pipeline.
 4. A single status flag. 0 = next pipeline can run, 1 = hand intervention required.

A complete "job" consists of the following steps:

1. Preparation. Stage any inputs that are needed. Create plan files, usually based
 on some rules about where directories are located.

 Make sure disk space is available. Inputs needed from previous
 pipelines are checked by looking for a "QC" file produced by any upstream pipelines.
 2. Submit the pipeline job. The pipeline usually receives a few key
 inputs, such as the location of plan files. Return 0 or 1.
 3. Run a status verify job that checks if the submitted job did complete.
 4. Run a pipeline verify job to generate QC information and starts
 the follow-on pipeline. Return 0 or 1.
 5. Run a "scrub" job that removes most files once they
 have been archived. The archiving is itself a "pipeline"

What would be required to invert the above procedure - i.e., given a request for a particular output file,
what additional work is needed to trigger the required processing? This is an area of a bit of research.

2.2 The Factory Mode

The factory itself is the DP scripts that join together the pipelines. There are 3 generic stages of the
factory at each and every pipeline:
 1. Prep
 generate plan file
 make relevant directories
 make sure the relevant data is available
 make relevant sym links
 locate space
 register the resources reserved in a flat file database
 Call submit

 2. Submit
 generate a shell script the fires off the batch system submit
 Call ender

 3. Ender
 periodically check status of a pipeline submit by looking for
 the files that should be created. The existence of the
 files is necessary and almost sufficient for the next step
 to succeed.
 after completion of the pipeline, run a quality control script,
 where various quantities (e.g., the number of galaxies/image)
 are given a sanity check. if QC checks, then

SDSS and GriPhyN

 6

 Call Prep for the next pipeline.

These are daisy chained: the first invocation of Prep takes as an argument how many of the following
pipelines to run in series.

Having said all of this, it is worth pointing out just how many control variables there are for each
pipeline step. We'll use as an example the plan file and parameter file for SSC, a simple pipeline. The
plan (see appendix A) is straightforward and can be script generated. The parameter file (see appendix
B) contains the parameters that control the behavior of the pipeline. It is entirely conceivable that any
of these may wish to be changed by someone invoking the pipeline (say, to invoke a stray light
correction necessary for some but not all of the data); in practice these don't change very often.

2.3 GriPhyN and the SDSS

It is worth noting that the SDSS factory is up and running. GriPhyN will not have an influence on
the design of either the pipelines or factory scripts, nor are the tools developed likely to make it into
the normal production modes. Having said that, the Southern Survey provides an opportunity for
GriPhyN to have an impact, and to learn from a very short term problem that requires success, not
designs. Furthermore, we are, unlike CMS, more interested in the virtual data technologies than the
data grid technologies, for the simple reason that the data reduction happens at a single site with
sufficient, though distributed, computing resources and the resulting data is small enough to push
around on the current Internet.

GriPhyN can contribute a framework for dealing with our factory in a request driven mode, as
opposed to our current data arrival driven mode: this may well take the form of learning how to
give a concrete and useful specification for deriving the data. GriPhyn can contribute mechanisms
for dealing with multiple copies of the same data, both as input and output. We believe there is an
opportunity for GriPhyN to contribute compute resource discovery and reservation systems: Virtual
Data systems require coordinated computation and data management.

The very first step might well be to take our existing infrastructure and describe in terms of the
Data Grid Reference Architecture.

3 The SDSS Virtual Data Problem: The Southern Coadd

We take as the virtual data driver the science of analyzing the weak lensing map of the Southern
coadded data. First things first: the southern coadd must be created, and that is only possible using
existing data.

 1) The Southern Survey Coadd
 run full pipelines on incoming data
 given an area on which to coadd,
 find relevant reduced data
 find disk space and compute power
 extract relevant reduced data from long term storage
 build mapping function from calibration data

SDSS and GriPhyN

 7

 perform coadd to create new reduced data
 keep track of intermediate coadd catalogs and data

 2) Run weak lensing analysis on the intermediate coadded south
 locate atlas images on disk
 compute optimal shape parameter
 produce shape catalog

Clearly the right approach to the existing SDSS factory is to place it as a single coherent entity into the
GriPhyN framework, as opposed to trying to put the individual pipelines into the framework.

Solving this problem provides avenues for future progress. One vision of the SDSS/NVO team is to
spin the SDSS data on a compute cluster and allow for demand driven re-reduction with the ever-
improving versions of Photo. Of course, one cannot just run Photo, as it is the center of a long
processing chain, but it is exactly this processing chain that must be made demand driven to solve the
weak lensing map problem.

3.1 The Southern Survey Coadd In Design Detail

 1. given an area on which to coadd,
 a. Take user input
 2. find relevant reduced data
 a. Query either a db or a flat file for the the runs that have
 been observed and extract the list of runs that are of
 the right strip.
 b. Using that list, determine which runs overlap the given area.
 Involves the calculation of a spatial intersection.
 c. Apply cuts against data that are not of high enough quality to use
 (even though other parts of the run may be.)
 d. Estimate how much data is involved.
 Metadata: a list of runs and portions of runs involved

 3. find disk space and compute power for input data, processing, and outputs
 a. Query the local network for available machines
 b. Query the local network for available storage
 c. Reserve the resources for a period of time
 Metadata: a list of machines

 4. extract relevant reduced data from storage
 a. From some knowledge base, determine for each run if the data is:
 1) on archival disk
 2) on production disk
 3) on fast tape
 4) on slow tape
 b. Arrange to get the data off the media and onto the production
 machines

SDSS and GriPhyN

 8

 Metadata: a list of portions of runs and where they live on
 production disk

 5. build mapping function from calibration data
 a. An image is a 1361x2048 array of pixels. In general two images
 of the "same" piece of sky will be:
 1) slightly offset in both x and y
 2) slightly rotated
 3) have different small distortions as a function of x,y superimposed
 4) have different conversion between pixel value and energy flux
 b. These translations, rotations, distortions, and scalings are
 calculateable from a set of calibration information that may or
 may not be kept as a header to the data itself.
 c. Find the calibrations, and build the mapping function for each pixel
 Metadata: computed mapping functions to be applied to the data

 6. perform coadd to create new reduced data
 a. Load a set of co-located images into memory
 b. Apply mapping function
 c. Perform median or average on stack of pixels (in truth: apply
 very clever algorithm to make maximal use of information
 and minimize noise)
 d. Save output to disk.
 Metadata: Location of output data

 7. run full SDSS pipeline on new data set
 a. arrange for all necessary input files to be in place
 b. arrange for all 10 pipelines to run
 c. watch success or failure of the pipelines
 d. save resulting outputs to disk
 Metadata: Location of output data

 8. keep track of intermediate coadd catalogs and data
 a. The output of 6. is to be preserved, as 7. can be done multiple times
 b. The output of 7. is to be preserved
 c. Each time new data comes in, the above is done.

 9) Run weak lensing analysis on the intermediate coadded south
 a) locate atlas images on disk
 b) compute optimal shape parameter
 c) produce shape catalog

SDSS and GriPhyN

 9

4 Conclusion

The Southern Survey Coadd presents a local, manageable version of the full Virtual Data problem, and
one which exhibits most of the major challenges of the full problem. Our collaboration will be ramping
up to perform the Southern Survey over the next two years, and one way or another we will surmount
the challenges and produce the weak lensing map. However, our activities during the process present
the GriPhyN collaboration with an opportunity for alpha testing of tools, techniques, and ideas.

SDSS and GriPhyN

 10

5 Appendix A: An Example SDSS Pipeline Plan File
A plan file is essentially the parameters controlling a batch job submission. The plan file presented
here is that from the SSC, the first of the SDSS production pipelines and among the most
straightforward. Production of these files could clearly be under the control of GriPhyN software.

 action ssc
 version "v4_6"
 parameters scParam.par
 report idReport-51075.par

 run 94
 rerun 5
 camCol 1
 endCol 1
 startCol 1

 startField 11
 endField 546

 koVersion "v2_0"
 verbose 0
 display 0

 ccdrow_r 1
 ccdrow_i 2
 ccdrow_u 3
 ccdrow_z 4
 ccdrow_g 5
 ccdrow_o 6
 ccdrow_l 7
 ccdrow_t 8
 ccdrow_s 9

 catalog_type equatorial

 aGangInputDir /data/dp3.b/data/94/5/gangs
 pGangInputDir /data/dp3.b/data/94/5/gangs
 fieldInputDir /data/dp3.b/data/94/5/fields/1

 fieldInputDevice disk_photo
 fieldOutputDevice disk_photo

SDSS and GriPhyN

 11

 tapeDeviceName disk
 tapeLabel NULL
 tapeLabelLength 80
 tapeSkipFiles 0
 tapeLogFile /data/dp3.b/data/94/5/logs/idTapeLog-NULL.par
 writePhotomOnly 0
 ignorePhotomData 0

 inputDir /data/dp3.b/data/94/5/ssc
 parametersDir .
 keepPhotomImages 1
 diagnostics 1
 diagFile scDiag
 koDir /data/dp3.b/data/94/5/ssc
 koFileBase koCat
 wingFile scWing
 frameFile scFrame
 configDir /data/dp3.b/data/94/5/logs
 ccdConfig opConfig-51437.par
 ccdECalib opECalib-51371.par
 ccdBC opBC-51008.par
 ccdCamera opCamera-51075.par

 outputDir /data/dp3.b/data/94/5/fangs/1
 outputFangDir /data/dp3.b/data/94/5/fangs/1

 QAplots 1

SDSS and GriPhyN

 12

6 Appendix B: An Example SDSS Pipeline Parameter File
A parameter file contains the parameters that an astronomer might wish to change upon running the
pipeline. The one presented here is from the SSC pipeline, the first of the SDS production pipelines
and among the most straightforward. It is worth noting that in princple the requester of Virtual Data
might wish to change any or all of these parameters for any or all of the pipelines; indeed it is this
possibility that is among the drivers of the need for Virtual Data. The problem is that then all of
these parameters must be presented to the Virtual Data requestor for possible change, along with
sufficient documentation for them to understand what they are changing.

Software parameters for SSC

bad chips
badCCDs {76}

frame size in pixels
vertical_frame_size 1361

matching stars
am_xpos_field rowCentroid # name of field (from SCPARAMBS structure)
 # used to compare astrometric stars in one
 # direction
am_ypos_field colCentroid # name of field (from SCPARAMBS structure) used
 # to compare astrometric stars in other
 # direction
am_match_diff 40 # two astrometric stars with centers which are
 # this close (or closer), in pixels in each
 # direction (not in true geometric distance)
 # are considered a match
ignore_DaCentroid_errors 1 # ignore errors from atDaCentroidFind?

defining flat-fielding method

ff_none 0 # perform no bias-subtraction or flatfielding
ff_quartiles 1 # use a flatfield vector based on the quartiles
ff_fixed 0 # use a fixed flatfield vector in a disk file
ff_filename scFlat_ # base of the filename inside which the
 # flatfield vector for each chip lives
 # Ex: scFlat_42.fit, 42=camera row and column
ff_maxncol 2128 # max number of cols in any photometric chip

SDSS and GriPhyN

 13

discarding bad data

bc_distance 10 # if a star is this close (pixels) to
 # a known chip defect, ignore it

calculating sky

sk_edge_npix 10 # use pixels within this many of edge
 # of a postage stamp to calc sky
sk_clip_nsigma 3.0 # clip values this many sigma from mean
 # when calculating sky value in stamp
sk_clip_niter 2 # make this many iterations in clipping
 # when calculating sky value in stamp
st_recenter_boxsize 25 # if > 0, calc center of a star using
 # first moments inside a box with this
 # half-length at center of stamp, and
 # re-cut stamp at the new position.
 # if == 0, do not re-cut stamp; keep stamp
 # based on position in the astrometric chips
st_object_threshold 8.0 # minimum peak level (in sky sigma) for an object
 # to be added to the stamp list
st_object_nmax 100 # maximum number of additional object per frame
st_conv_sigma 1.2 # width (pix) of gaussian with which to
 # convolve stamps

How to clip the data

ds_statusfit_delete 0 # if 1, discard stars which have "statusfit"
 # field != 0
ds_filterlist g # only test these filters for valid parameters
ds_minrmajor 0.4 # rMajor must be > this to be OK
ds_maxrmajor 15.0 # rMajor must be < this to be OK
ds_minrminor 0.1 # rMinor must be > this to be OK
ds_maxrminor 10.0 # rMinor must be < this to be OK
ds_minpeak 1.0 # peak must be > this
ds_maxpeak 66000.0 # peak must be < this
ds_radius_bit 1 # set this bit in the "sscstatus"
 # field of SCPARAMBS if any radius
 # length is outside allowed range
ds_radius_delete 0 # if 1, discard stars which fail radius tests
ds_peak_bit 2 # set this bit in the "sscstatus" field of
 # SCPARAMBS if peak is outside allowed range
ds_peak_delete 0 # if 1, discard stars which fail peak tests

"wing" stars parameters

SDSS and GriPhyN

 14

ws_pix_offset 400 # max number of pixels away from center
 # of its CCD chip for a "wing star"
ws_min_mag 8.0 # minimum mag allowed for "wing star"
 # (in whatever passband is in catalog)
ws_max_mag 14.0 # maximum mag allowed for "wing star"
ws_box_size 200 # size of box, in pixels, which we cut

"frame" stars parameters

fs_pix_offset 300 # max number of pixels away from center
 # of its CCD chip for a "frame star"
fs_min_mag 1.0 # minimum mag allowed for "frame star"
 # (in whatever passband is in catalog)
fs_max_mag 8.0 # maximum mag allowed for "frame star"

